Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Sukeri M. Yusof and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.113$
Data-to-parameter ratio $=17.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-Benzoyl- N^{\prime}-(2-chlorophenyl)thiourea

In the molecule of the title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{OS}$, the dihedral angle between the o-chlorophenyl ring and the central carbonylthiourea fragment is $29.36(8)^{\circ}$. There is an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl} / \mathrm{O}$ bifurcated hydrogen bond. The molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, forming dimers which are arranged parallel to (100).

Comment

Recent studies have shown that thiourea derivatives are potential biologically active agents, such as antimicrobials and HIV inhibitors (Vankatachalam et al., 2001). In the title compound, (I), the benzoyl and o-chlorophenyl groups lie cis and trans, respectively, to the S atom across the thiourea $\mathrm{C}-\mathrm{N}$ bonds (Fig. 1 and Table 1). The central carbonylthiourea moiety (S1/C8/N1/N2/C9), phenyl (C1-C6) and o-cholorophenyl (C9-C14/Cl1) fragments are each planar. The maximum deviation is 0.020 (1) \AA for N 2 . The central carbonylthiourea moiety makes dihedral angles with the phenyl and o-cholorophenyl fragments of 11.96 (9) and $29.36(8)^{\circ}$, respectively. The latter is larger than the angles of 20.40 (11) and 7.52 (9) ${ }^{\circ}$ in N-benzoyl- N^{\prime}-(p-bromophenyl)thiourea (Yamin \& Yusof, 2003b) and N-benzoyl- N^{\prime}-phenylthiourea (Yamin \& Yusof, 2003a), respectively. However, the phenyl group is inclined to the o-chlorophenyl fragment by $38.67(10)^{\circ}$, comparable with the angle in N-benzoyl- $N^{\prime}-(p$ bromophenyl)thiourea [38.61 (11) ${ }^{\circ}$].

(I)

There are three intramolecular hydrogen bonds (Fig. 1 and Table 2). As a result, pseudo-five- and six-membered rings are formed. In the crystal structure, the molecules are linked by an $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1(-x, 1-y,-z)$ hydrogen bond to form dimers, which are arranged parallel to the $b c$ plane (Fig. 2), which is in contrast to the polymeric hydrogen-bonded chains observed for N-benzoyl- N^{\prime}-(p-bromophenyl)thiourea (Yamin \& Yusof, 2003b).

Experimental

A solution of 2-chlorophenylaniline $(2.56 \mathrm{~g}, 0.020 \mathrm{~mol})$ in acetone $(50 \mathrm{ml})$ was added dropwise to 50 ml of an acetone solution containing an equimolar amount of benzoyl isothiocyanate in a twonecked round-bottomed flask. The solution was refluxed for 2 h and

Received 22 June 2004 Accepted 16 July 2004 Online 24 July 2004
then cooled in ice. The colourless precipitate was filtered off and washed with aqueous ethanol, then dried in a vacuum (yield 80%). Recrystallization from ethanol yielded crystals of (I) suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{OS}$
$M_{r}=290.76$
Monoclinic, $P 2_{1} / c$
$a=8.1435$ (8) \AA
$b=12.3788$ (13) \AA
$c=13.2782$ (14) \AA
$\beta=95.332$ (2) ${ }^{\circ}$ 。
$V=1332.7$ (2) \AA^{3}
$Z=4$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.849, T_{\text {max }}=0.866$
7955 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.113$
$S=1.02$
3039 reflections
172 parameters
H -atom parameters constrained
$D_{x}=1.449 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 2207
reflections
$\theta=2.3-27.5^{\circ}$
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.39 \times 0.35 \times 0.34 \mathrm{~mm}$

3039 independent reflections
2336 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-15 \rightarrow 16$
$l=-17 \rightarrow 12$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0497 P)^{2}\right. \\
& +0.3301 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.29 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

S1-C8	$1.6588(19)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.390(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.218(2)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.328(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.371(2)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.413(2)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$-171.04(18)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2$	$-8.9(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$17.0(3)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{Cl} 1$	$3.6(2)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$-178.33(17)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.86	2.73	$3.4105(17)$	137
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1$	0.86	2.52	$2.9165(15)$	109
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	1.94	$2.654(2)$	139
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~S} 1$	0.93	2.62	$3.188(2)$	120

Symmetry code: (i) $-x, 1-y,-z$.
After checking their presence in difference-density maps, all H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.20 U_{\text {eq }}$ (parent).

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids. Dashed lines denote hydrogen bonds.

Figure 2
Packing diagram of (I), viewed down the a axis. Dashed lines denote the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.
structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grant IRPA No.09-02-02-0163.

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Vankatachalam, T. K., Sudbeck, E. A., Mao, C. \& Uckun, F. M. (2001). Bioorg. Med. Chem. Lett. 11, 523-528.
Yamin, B. M. \& Yusof, M. S. M. (2003a). Acta Cryst. E59, o151-o152.
Yamin, B. M. \& Yusof, M. S. M. (2003b). Acta Cryst. E59, o340-o341.

